Operators Manual
148 Pages

Preview
Page 1
MEDICAL INSTRUMENTS
9180 Electrolyte Analyzer Operator's Manual
2nd Edition June 1996 Copyright, 1996, AVL Scientific Corporation. All rights reserved. Unless otherwise noted, no part of this publication may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language in any form without the written permission of AVL Scientific Corporation. For information contact: AVL Scientific Corporation 50 Mansell Court P.O. Box 337 Roswell, Georgia USA 30077 1-800-526-2272 Printed in USA PD5006 REV B
ii
AVL MEDICAL INSTRUMENTS AG Stettemerstrasse 28 CH-8207 Schaffhausen Switzerland 41-848-800-885
AVL LIST GmbH Kleiststrasse 48 A-8020 Graz Austria 43-316-987
Important Information! This Operator´s Manual contains important warnings and safety information to be observed by the user. This instrument is only intended for one area of application which is described in the instructions. The most important prerequisites for application, operation and safety, are explained to ensure smooth operation. No warranty or liability claims will be covered if the instrument is applied in areas other than those described or if the necessary prerequisites and safety measures are not observed. The instrument is only to be operated by qualified personnel capable of observing these prerequisites. Only accessories and supplies either delivered by or approved by AVL are to be used with the instrument. Due to this instrument operating principle, analytical accuracy not only depends on correct operation and function, but also upon a variety of external influences beyond the manufacturers control. Therefore, the test results from this instrument must be carefully examined by an expert, before further measures are taken based on the analytical results. Instrument adjustment and maintenance with removed covers and connected power mains are only to be performed by a qualified technician who is aware of the dangers involved. Instrument repairs are only to be performed by the manufacturer or qualified service personnel. Symbol
!
Explanation Attention symbol - Refer to the Operator's Manual or Service Manual for further instructions. This symbol is located on the inside of the instrument. Type B instrument symbol - An instrument of the B type falls under safety categories I, II, or III, or has an internal power supply providing the required insulation against discharge current and reliable ground connections.
Important Information! iii
Operating Safety Information This instrument falls under Safety Category I. This instrument is a Class B instrument. This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interferences, and (2) this device must accept any interference received, including interference that may cause undesired operation.
Warning: Changes or modifications to this unit not expressly approved by the party responsible for compliance could void the users authority to operate the equipment. Note: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communication. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does not cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:
Reorient or relocate the receiving antenna Increase the separation between the equipment and receiver Connect the equipment into an outlet on a circuit different from that to which the receiver is connected. Consult the dealer or an experienced radio TV technician for help
Caution:
The instrument is designed as a conventional device (closed, not waterproof type). Do not operate the instrument in an explosive environment or in the vicinity of explosive anesthetic mixtures containing oxygen or nitrous oxide. This instrument is suitable for continuous operation. The power plug is to be plugged into a ground socket only. When using an extension cord, make sure that it is of the proper size and is properly grounded. Any breakage of the ground lead inside or outside the instrument or a loose ground connection can cause a hazardous condition when operating the instrument. Intentional disconnection of the grounding is not permitted. When replacing the fuses, make sure that they are of the same type and rating as the original fuses. Never use repaired fuses or short-circuit the fuse holders.
Operating Safety Information iv
METHOD SHEET Intended Use The AVL 9180 Electrolyte Analyzer is intended to be used for the measurement of sodium, potassium, chloride, ionized calcium and lithium in samples of whole blood, serum, plasma, urine, dialysate and aqueous standard solutions.
Clinical Significance1,2 Sodium Sodium is the major cation of extracellular fluid. Its primary functions in the body are to chemically maintain osmotic pressure and acid-base balance and to transmit nerve impulses. Sodium functions at the cell membrane level by creating an electrical potential between different cell membranes causing the transmission of nerve impulses and neuromuscular excitability to be maintained. Sodium is involved in some enzyme catalyzed reactions as a cofactor. The body has a strong tendency to maintain a total base content, and only slight changes are found even under pathologic conditions. Low sodium values, hyponatremia, usually reflect a relative excess of body water rather than a low total body sodium. Reduced sodium levels may be associated with: low sodium intake; sodium losses due to vomiting or diarrhea with adequate water and inadequate salt replacement, diuretics abuse, or salt-losing nephropathy; osmotic diuresis, metabolic acidosis; adrenocortical insufficiency; congenital adrenal hyperplasia; dilution type due to edema, cardiac failure, hepatic failure; and hypothyroidism. Elevated sodium values, hypernatremia, are associated with conditions with water loss in excess of salt loss through profuse sweating, prolonged hyperpnea, severe vomiting or diarrhea, diabetes insipidus or diabetic acidosis; increased renal sodium conservation in hyperaldosteronism, Cushings syndrome; inadequate water intake because of coma or hypothalamic diseases; dehydration; or excessive saline therapy. The sodium value obtained may be used in the diagnosis or monitoring of all disturbances of the water balance, infusion therapies, vomiting, diarrhea, burns, heart and kidney insufficiencies, central or renal diabetes insipidus, endocrine disturbances and primary or secondary cortex insufficiency of the adrenal gland or other diseases involving electrolyte imbalance.
Tietz, Norbert W., Ed., Clinical Guide to Laboratory Tests, 2nd Ed., (Philadelphia: W.B.Saunders, Co., 1990) p.98-99, 118-119, 456-459, 510-511, 720-721. 2 Burtis C, Ashwood E (Eds.), Tietz Textbook of Clinical Chemistry, 2nd Ed., (Philadelphia: W.B.Saunders, Co., 1994) pp.1354-1370. 1
v
Potassium Potassium is the major cation in the intracellular fluid and functions as the primary buffer within the cell itself. Ninety percent of potassium is concentrated within the cell, and damaged cells release potassium into the blood. Potassium plays an important role in nerve conduction, muscle function, and helps maintain acid-base balance and osmotic pressure. Elevated potassium levels, hyperkalemia, can be found in oliguria, anemia, urinary obstruction, renal failure due to nephritis or shock, metabolic or respiratory acidosis, renal tubular acidosis with the K+/ H+ exchange and hemolysis of the blood. Low potassium levels, hypokalemia, can be found in excessive loss of potassium through diarrhea or vomiting, inadequate intake of potassium, malabsorption, severe burns and increased secretion of aldosterone. High or low potassium levels may cause changes in muscle irritability, respiration and myocardial function. The potassium value obtained may be used to monitor electrolyte imbalance in the diagnosis and treatment of infusion therapies, shock, heart or circulatory insufficiency, acid-base imbalance, therapy with diuretics, all kinds of kidney problems, diarrhea and hyper- and hypo-function of adrenal cortex and other diseases involving electrolyte imbalance.
Chloride Chloride is an anion that exists predominantly in extracellular spaces. It maintains cellular integrity through its influence on osmotic pressure. It is also significant in monitoring acid-base balance and water balance. In metabolic acidosis, there is a reciprocal rise in chloride concentration when the bicarbonate concentration drops. Decreased levels are found in severe vomiting, severe diarrhea, ulcerative colitis, pyloric obstruction, severe burns, heat exhaustion, diabetic acidosis, Addisons disease, fever and acute infections such as pneumonia. Increased levels are found in dehydration, Cushings syndrome, hyperventilation, eclampsia, anemia, cardiac decompensation.
Ionized Calcium Calcium in blood is distributed as free calcium ions (50 %), bound to protein, mostly albumin (40 %) and 10 % bound to anions such as bicarbonate, citrate, phosphate and lactate. However, only ionized calcium can be used by the body in such vital processes as muscular contraction, cardiac function, transmission of nerve impulses and blood clotting. The AVL 9180 Analyzer measures the ionized portion of the total calcium. In certain disorders such as pancreatitis and hyperparathyroidism, ionized calcium is a better indicator for diagnosis than total calcium.
vi
Elevated calcium, hypercalcemia, may be present in various types of malignancy, and calcium measurements may serve as biochemical markers. In general, while ionized calcium may be slightly more sensitive, either ionized or total calcium measurements have about equal utility in the detection of occult malignancy. Hypercalcemia occurs commonly in critically ill patients with abnormalities in acid-base regulation and losses of protein and albumin, which gives a clear advantage to monitoring calcium status by ionized calcium measurements. Patients with renal disease caused by glomular failure often have altered concentrations of calcium, phosphate, albumin, magnesium and pH. Since these conditions tend to change ionized calcium independently of total calcium, ionized calcium is the preferred method for accurately monitoring calcium status in renal disease3 . Ionized calcium is important for diagnosis or monitoring of: hypertension management, parathyroidism, renal diseases, inadequate calcium intake, vitamin D monitoring, dialysis patients, cancer, pancreatitis, effect of diuretics, malnutrition, kidney stones, multiple myeloma and diabetes mellitus.
Lithium Lithium is a monovalent alkali metal which is usually absent in the human body. It is used in the treatment of manic depression psychosis. The drug has proven highly effective in its intended use but some clinically significant complications have been associated with its use. Lithium binding to the plasma proteins is less than 10% and its half life is 7 - 35 hrs. It is mainly eliminated from the body by urine (95%). Lithium has a very narrow therapeutic range. Initial dosing is aimed at between 0.80 to 1.20 mmol/L and the long-term maintenance level is 0.60 to 0.80 mmol/L. The concentration of lithium in serum during therapy is closely monitored, because lithium is acutely toxic with concentrations that are slightly higher than the above therapeutic range.
Urine Electrolytes The electrolytes present in the human body and also ingested daily from food are excreted from the body in a natural circulation via the renal system, into the urine. Measurement of electrolytes in excreted urine gives important information about the efficiency of the kidneys and other pathological situations. Urine examinations can be made on a random urine sample or for a quantitative determination on a 24 hour collected urine sample. The quantity of electrolytes excreted per day can be determined by multiplying the measured concentration (mmol/L) with the total quantity of urine excreted in one day. Burritt MF, Pierides AM, Offord KP: Comparative studies of total and ionized serum calcium values in normal subjects and in patients with renal disorders. Mayo Clinic Proc. 55:606, 1980.
3
vii
Dialysate Electrolytes In the dialyzer, arterial blood and suitable dialysate liquids are led to a dialysis membrane in opposite directions. The structure of the membrane is such that it prevents the diffusion of proteins and red blood cells through the membrane. Since the composition of the blood and the dialysate are different, a gradient will be formed at the membrane and thus smaller molecules are activated to diffuse through the membrane. This method is effectively used to remove substances like urea, uric acid which are unable to excrete from the blood because of renal insufficiency. When the concentration of the electrolytes between the blood and dialysate liquid deviates significantly, the electrolytes diffuse in the direction towards the lower concentration (i.e. from blood into the dialysis liquid or vice versa). Analysis of electrolytes in dialysis is of immense clinical significance and provides useful information to the clinician. The use of ISE's in dialysis are: To control the patient's electrolyte balance before, during and after the dialysis for fast recognition of deviations and also for making early corrections. To control the electrolyte concentrations in the dialysis liquid. Normally they are prepared by mixing appropriate concentrations of the substances with a defined quantity of distilled water.
Principles of Procedures The AVL 9180 Analyzer methodology is based on the ion-selective electrode (ISE) measurement principle to precisely determine the measurement values. There are six different electrodes used in the AVL 9180 Electrolyte Analyzer: sodium, potassium, chloride, ionized calcium, lithium and a reference electrode. Each electrode has an ion-selective membrane that undergoes a specific reaction with the corresponding ions contained in the sample being analyzed. The membrane is an ion exchanger, reacting to the electrical charge of the ion causing a change in the membrane potential, or measuring voltage, which is built up in the film between the sample and the membrane. A galvanic measuring chain within the electrode determines the difference between the two potential values on either side of the membrane. The galvanic chain is closed through the sample on one side by the reference electrode, reference electrolyte and the "open terminal". The membrane, inner electrolyte and inner electrode close the other side. A difference in ion concentrations between the inner electrolyte and the sample causes an electrochemical potential to form across the membrane of the active electrode. The potential is conducted by a highly conductive, inner electrode to an amplifier. The reference electrode is connected to ground as well as to the amplifier. The ion concentration in the sample is then determined by using a calibration curve determined by measured points of standard solutions with precisely known ion concentrations.
viii
Specimen Collection and Handling Safety Universal precautions must be observed when collecting blood specimens. It is recommended that all blood specimens be handled as potentially infectious specimens capable of transmitting human immunodeficiency virus (HIV), hepatitis B virus (HBV), or other bloodborne pathogens. Proper blood collection technique must be followed in order to minimize risk to the laboratory staff. Gloves should always be worn when handling blood and other body fluids. Please refer to NCCLS document, M29-T2, Protection of Laboratory Workers from Infectious Disease Transmitted by Blood, Body Fluids, and Tissue - Second Edition; Tentative Guideline for further information on safe handling of these specimens.
Sample Requirements Refer to NCCLS document, H11-A2, Percutaneous Collection of Arterial Blood for Laboratory Analysis - Second Edition; Approved Standard, May 1992, for detailed information on sample collection, storage and handling. Blood sampling for analysis must be performed under proper supervision with details of collection, including sampling devices, site selection, sample handling and documentation approved by the personnel responsible. Specific procedures used should follow NCCLS guidelines.
Anticoagulants and Sample Collection Devices The AVL 9180 Electrolyte Analyzer will accept samples directly from syringes, collection tubes, samples cups and, with the use of an adapter, from capillary tubes or the AVL Microsampler. For whole blood and plasma samples, a balanced heparin that does not affect the electrolyte values is the recommended anticoagulant of choice. Sodium heparin is also an acceptable anticoagulant for electrolyte analysis, however, heparin binds ionized calcium to a certain extent falsely decreasing the measurement values. Other anticoagulants such as EDTA, citrate, oxalate and fluoride have a significant effect on blood electrolytes and should not be used. For serum samples, containers without additives are recommended.
ix
Handling and Storage of Samples For ionized calcium values, anaerobic conditions should be followed for all sample types. Contact with ambient air will cause a loss of CO2 in the sample and the subsequent rise in pH will cause a reduction in ionized calcium.
Whole Blood Whole blood samples should be collected in a heparinized syringe, AVL Microsampler or capillary and analyzed as soon as possible after collection. The sample container should be filled as much as possible, leaving minimal residual air space. If brief storage is required, do not cool the sample, as the erythrocytes could burst and release the intracellular potassium, creating an inaccurate potassium value in the sample.
Plasma Plasma samples should be obtained by immediately centrifuging heparinized whole blood, separating the plasma from red cells and capping the sample tube. Analyze as soon as possible. If storage is required, the samples should be capped and refrigerated at 4 to 8 °C. Refrigerated samples should be allowed to warm to room temperature (15 to 30 °C) prior to analysis. If storage exceeds one hour, the plasma sample must be recentrifuged to remove additional fibrin clots.
Serum Serum samples should be obtained by collecting blood in an untreated blood collecting tube. The sample should stand for 30 minutes to allow the clot to form prior to centrifugation. After centrifugation, remove the serum from the clot, and cap or seal the sample tube. If storage is required, the sample should be stored, tightly capped, under refrigeration at 4 to 8 °C, and allowed to return to room temperature, 15 to 30 °C, prior to analysis. Each laboratory should determine the acceptability of its own blood collection syringes, capillaries and tubes and the serum or plasma separation products. Variations in these products exist between manufacturers, and at times, from lot to lot.
x
Reagents ISE SnapPakTM (BP5186) containing the following reagents: Standard A Use: Contents: Active Ingredients:
Additives: Storage: Stability:
For calibration of sodium, potassium, chloride, ionized calcium and lithium in the AVL 9180 Electrolyte Analyzer 350 mL Na+ 150 mmol/L + K 5.0 mmol/L Cl 115 mmol/L ++ Ca 0.9 mmol/L Li+ 0.3 mmol/L Germicides Temperature: 5 - 30 °C (41 - 86 °F) Expiration Date & Lot Number are printed on each container label.
Standard B Use: Contents: Active Ingredients:
Additives: Storage: Stability:
For calibration of sodium, potassium, chloride, ionized calcium and lithium in the AVL 9180 Electrolyte Analyzer 85 mL Na+ 100 mmol/L + K 1.8 mmol/L Cl 72 mmol/L ++ Ca 1.5 mmol/L Li+ 0.3 mmol/L Germicides Temperature: 5 - 30 °C (41 - 86 °F) Expiration Date & Lot Number are printed on each container label.
xi
Standard C Use: Contents: Active Ingredients:
Additives: Storage: Stability:
For calibration of sodium, potassium, chloride, ionized calcium and lithium in the AVL 9180 Electrolyte Analyzer 85 mL Na+ 150 mmol/L + K 5.0 mmol/L Cl 115 mmol/L Ca++ 0.9 mmol/L + Li 1.4 mmol/L Germicides Temperature: 5 - 30 °C (41 - 86 °F) Expiration Date & Lot Number are printed on each container label.
Reference Solution Use: Contents: Active Ingredients: Additives: Storage: Stability:
A salt bridge for calibration and measurement in the AVL 9180 Electrolyte Analyzer 85 mL Potassium chloride 1.2 mol/L Germicides Temperature: 5 - 30 °C (41 - 86 °F) Expiration Date & Lot Number are printed on each container label.
Separately Packaged Reagents: Cleaning Solution A (BP1025) Use: Contents: Active Ingredients: Additives: Storage: Stability:
xii
For cleaning the AVL 9180 Analyzer measuring system. Each dispensing bottle contains 100 mL of solution Neodisher MA (detergent) 3.5 g/L none Temperature: 5 - 30 °C (41 - 86 °F) Expiration Date & Lot Number are printed on each container label.
Conditioning Solution (BP0380) Use: Contents: Active Ingredients: Additives: Storage: Stability:
For daily conditioning of the sodium electrode and sample sensor in the AVL 9180 Analyzer. Each dispensing bottle contains 100 mL of solution (U.S. market) Ammonium bifluoride 100 mmol/L none Temperature: 5 - 30 °C (41 - 86 °F) Expiration Date & Lot Number are printed on each container label.
Urine Diluent (BP0344) Use: Contents: Active Ingredients: Additives: Storage: Stability:
For use as a diluent for the measurement of urine samples in AVL electrolyte system. Each bottle contains 500 mL of solution Sodium chloride 120 mmol/L germicides Temperature: 5 - 30 °C (41 - 86 °F) Expiration Date & Lot Number are printed on each container label.
PRECAUTIONS: Use of calibration solutions or electrodes not manufactured for AVL could void the warranty. A waste container is provided with the ISE SnapPakTM which, when used, holds human body fluids which may be potentially infectious; handle with appropriate care to avoid skin contact or ingestion. FOR IN-VITRO DIAGNOSTIC USE.
Procedure Materials Needed Description
Part Number
ISE SnapPakTM Cleaning Solution A Conditioning Solution Urine Diluent Printer Paper (5 rolls)
BP5186 BP1025 BP0380 BP0344 HP5025
xiii
The AVL 9180 Analyzer allows the operator to select one of the following measuring modes: whole blood, serum, urine, standard, Q.C. material, acetate or bicarbonate depending on the sample type to be analyzed. The analyzer automatically processes the sample through the necessary steps, then prints and displays the results. In the blood, serum and Q.C. measuring modes, the results for sodium and potassium are reported by default as flame photometry equivalent values; chloride, ionized calcium, and lithium are reported as ISE direct potentiometry values. The urine mode allows for the measurement of prediluted urine samples for sodium, potassium and chloride. The acetate, bicarbonate and standard mode allows for the measurement of aqueous solutions and reports as ISE direct potentiometry values. For details of this operation, please refer to the Operator's Manual.
Test Conditions Sample Size: Sample Types: Sample Container: Ambient Temperature: Relative Humidity: Type of Measurement:
95 µL Whole blood, serum, plasma, urine, acetate and bicarbonate dialysate solutions capillary, AVL Microsampler, syringe, collection tube, sample cup. +15 to +32 °C ( 60 to 90 °F) 5% to 85% (non-condensing) direct potentiometry
Measured Parameters Parameter
Measurement Range
Display Resolution
Whole blood, serum, plasma, dialysate and aqueous solutions: Sodium Potassium
40 - 205 mmol/L 1.5 - 15 mmol/L (0.8 - 15 mmol/L dialysate) Chloride 50 - 200 mmol/L ionized Calcium 0.2 - 5.0 mmol/L Lithium 0.1 - 6.0 mmol/L (Lithium is not measured in dialysate samples)
Urine
Sodium Potassium
1 - 300 mmol/L 4.5 - 120 mmol/L (60-120 with additional dilution) Chloride 1 - 300 mmol/L (Calcium and Lithium are not measured in urine samples)
xiv
1 or 0.1 0.1 or 0.01
mmol/L mmol/L
1 or 0.1 0.01 or 0.001 0.01 or 0.001
mmol/L mmol/L mmol/L
1 0.1
mmol/L mmol/L
1
mmol/L
Calibration The analyzer contains software which permits one of six parameter configurations: Na+/K+/Ca++, Na+/K+/Cl-, Na+/K+/Li+, Na+/K+, Na+/Li+, Li+. Each of these configurations uses the same calibration solutions. A 2-point calibration is performed automatically every 4 hours in READY mode and a 1-point calibration is automatically performed with every measurement. An automatic calibration procedure is also performed shortly after power-on or reset. A calibration cycle can also be initiated manually at times when no sample measurements are performed.
Quality Control AVL recommends that at least once daily or in accordance with local regulations, quality control solutions with known Na+, K+, Cl-, Ca++ and Li+ values should be analyzed at two levels (normal and low or high). For further details, please review the Quality Control section of the Operator's Manual. Results obtained should fall within limits defined by the day-to-day variability of the system as measured in the users laboratory. If the results fall outside the laboratorys acceptable limits, refer to the Troubleshooting Section of the Operator's Manual.
Reference Interval Specimen
Reference Ranges Na+ (mmol/l)
K+ (mmol/L)
Ca++ (mmol/L)
Cl(mmol/L)
Li+ (mmol/L)
serum, plasma, whole blood
136-1451
3.5-5.11
1.12-1.321
97-1114
0.6-1.201
urine (mmol/24hrs)
40-2201
25-1251
N/A
110-2501
N/A
The ranges are provided for reference only. Each laboratory should establish its own reference interval for Na+, K+ , Cl-, Ca++ and Li+ as performed on the AVL 9180 Electrolyte Analyzer.
4
Henry, R.J., Clinical Chemistry - Principles and Technics, (New York: Harper and Row, 1974)
xv
Limitations of the Procedure A number of substances have been reported to cause physiological changes in blood, serum, and plasma analyte concentrations. A comprehensive discussion concerning these and other interfering substances, their blood, serum or plasma concentrations and their possible physiological involvement is beyond the scope of this method sheet. No significant effect on serum and urine has been demonstrated from bromide, ammonium and iodide. As with any clinical reaction, users must be alert to the possible effect on results due to unknown interference from medications or endogenous substances. All patient results must be evaluated by the laboratory and the physician in light of the total clinical status of the patient. Opening and closing the fist with a tourniquet in place results in an increase in potassium levels by as much as 10 to 20%. It is recommended that the blood sample be obtained without a tourniquet, or that the tourniquet be released after the needle has entered the vein and 2 minutes elapsed before the sample is drawn. Since the concentration of potassium inside erythrocytes is much greater than that in extracellular fluid, hemolysis should be avoided, and the serum should be separated from the cells as soon as possible after collection. The lithium electrode response is dependent on the actual sodium concentration of the sample. The AVL 9180 Analyzer reports lithium in the range of 105 - 180 mmol/L Na+. Interferences Salicylate, in extremely high levels, is known to interfere with the chloride electrode and results in a positive bias of the chloride result. At therapeutic levels of salicylate concentration, the influence on chloride is clinically insignificant. The lithium electrode shows a slight sensitivity to the ionized calcium present in the sample and results in a negative bias of the lithium result. At normal physiological ionized calcium concentrations, the influence of ionized calcium is clinically insignificant.
5
Kost GJ.Arch.Path.Lab.Med., Vol.117, Sep.1993, p.890-95
xvi
Relationship of ionized Calcium to total Calcium The ratio of ionized calcium to total calcium in a healthy population is around 0.50 or 50% 1,5. These relationships may be altered when using citrate in blood, or when the acid-base metabolism is disturbed.
Specific Performance Characteristics Reproducibility Typical Within-Run (Swr) Between-Day (Sdd) and Total (ST) Precision is determined from 2 runs per day with 2 replicates per run for 20 days on two AVL 9180 analyzers in each of its three configurations. Values for sodium and potassium are average of all six instruments, while values for chloride, ionized calcium and lithium are determined from the measurement of two of each respective unit configuration. All values are reported in mmol/L. Material: ISE-trol Protein Based Aqueous Control Material - Level 1 Parameter mean Swr (CV%) Sdd (CV%) Sodium 114.6 0.48 0.42% 0.76 0.66% Potassium 2.82 0.025 0.87% 0.035 1.24% Chloride 76.7 0.29 0.38% 0.52 0.67% ionized Calcium 2.07 0.015 0.72% 0.024 1.18% Lithium 0.40 0.010 2.40% 0.018 4.57%
ST (CV%) 0.89 0.78% 0.041 1.44% 0.72 0.94% 0.034 1.66% 0.026 6.41%
Material: ISE-trol Protein Based Aqueous Control Material - Level 2 Parameter mean Swr (CV%) Sdd (CV%) Sodium 141.2 0.40 0.28% 0.30 0.21% Potassium 4.35 0.024 0.55% 0.023 0.53% Chloride 102.4 0.18 0.18% 0.20 0.20% ionized Calcium 1.35 0.016 1.21% 0.021 1.55% Lithium 1.04 0.012 1.19% 0.035 3.36%
ST (CV%) 0.46 0.33% 0.036 0.82% 0.32 0.31% 0.042 3.10% 0.045 4.31%
xvii
Material: ISE-trol Protein Based Aqueous Control Material - Level 3 Parameter mean Swr (CV%) Sdd (CV%) Sodium 158.8 0.51 0.32% 0.76 0.48% Potassium 5.74 0.027 0.48% 0.026 0.45% Chloride 123.2 0.36 0.29% 0.89 0.72% ionized Calcium 0.63 0.010 1.52% 0.007 1.07% Lithium 2.59 0.025 0.97% 0.063 2.44% Material: RNA EQUIL Reduced Bovine Hemoglobin Solution - Level 2 Parameter mean Swr (CV%) Sdd (CV%) Sodium 134.8 0.53 0.40% 0.45 0.33% Potassium 4.89 0.039 0.79% 0.021 0.42% Chloride 100.4 0.43 0.43% 0.42 0.41% ionized Calcium 1.10 0.008 0.75% 0.004 0.40% Lithium N/A
xviii
ST (CV%) 0.90 0.56% 0.036 0.62% 1.17 0.95% 0.014 2.29% 0.082 3.18% ST (CV%) 0.63 0.47% 0.043 0.88% 0.58 0.57% 0.011 0.95%
Material: Aqueous Standard Solution - Level 1 Parameter mean Swr (CV%) Sodium 150.0 0.55 0.37% Potassium 4.97 0.022 0.44% Chloride 115.0 0.11 0.09% ionized Calcium 0.96 0.004 0.41% Lithium 0.30 0.004 1.27%
Sdd (CV%) 0.34 0.23% 0.018 0.36% 0.08 0.07% 0.004 0.39% 0.005 1.60%
ST (CV%) 0.57 0.38% 0.029 0.57% 0.16 0.14% 0.007 0.76% 0.008 2.48%
Material: Aqueous Standard Solution - Level 2 Parameter mean Swr (CV%) Sodium 113.2 0.51 0.45% Potassium 1.82 0.033 1.88% Chloride 82.9 0.27 0.33% ionized Calcium 2.43 0.014 0.56% Lithium 5.42 0.043 0.78%
Sdd (CV%) 0.96 0.85% 0.043 2.36% 0.67 0.80% 0.032 1.33% 0.155 2.86%
ST (CV%) 1.07 0.95% 0.053 2.92% 0.87 1.05% 0.043 1.76% 0.196 3.62%
Material: Pooled Human Serum Parameter mean Swr Sodium 138.8 0.30 Potassium 4.49 0.034 Chloride 106.8 0.18 ionized Calcium 1.19 0.007 Lithium 0.17 0.011
(CV%) 0.22% 0.75% 0.17% 0.55% 6.19%
Sdd (CV%) 0.36 0.28% 0.041 0.92% 1.00 0.93% 0.031 2.64% 0.015 8.40%
ST (CV%) 0.47 0.34% 0.051 1.13% 1.24 1.16% 0.039 3.29% 0.023 13.28%
(CV%) 0.98% 1.41% 0.24% 1.13%
Sdd (CV%) 1.81 2.10% 0.041 1.94% 0.23 0.21% 0.092 5.20%
ST (CV%) 1.78 2.07% 0.049 2.32% 0.40 0.37% 0.115 6.50%
Material: Bicarbonate Dialysate Solution Parameter mean Swr (CV%) Sodium 135.2 0.45 0.33% Potassium 1.58 0.023 1.46% Chloride 107.3 0.37 0.35% ionized Calcium 1.68 0.012 0.72% Lithium N/A
Sdd (CV%) 0.59 0.44% 0.031 1.95% 0.63 0.59% 0.016 0.96%
ST (CV%) 0.72 0.54% 0.037 2.37% 0.86 0.80% 0.027 1.63%
Sdd 3.06 0.97 0.66
ST 3.65 1.11 0.99
Material: Acetate Dialysate Solution Parameter mean Swr Sodium 86.1 0.85 Potassium 2.09 0.029 Chloride 107.8 0.25 ionized Calcium 1.77 0.020 Lithium N/A
Material: Urine Parameter Sodium Potassium Chloride ionized Calcium Lithium
mean 51.5 48.4 85.9 N/A N/A
Swr 1.98 0.65 0.53
(CV%) 3.84% 1.34% 0.62%
(CV%) 5.94% 2.00% 0.76%
(CV%) 7.08% 2.29% 1.16%
xix
Linearity in Aqueous Standard Solutions Aqueous linearity standards were gravimetrically prepared from N.I.S.T. traceable salts and measured on each of six AVL 9180 instruments, two of each configuration: Na/K/Cl, Na/K/iCa and Na/ K/Li. Parameter Sodium Potassium Chloride ionized Calcium Lithium
Slope
Intercept
Correlation Coefficient
0.99993 0.99838 0.97556 1.01552 0.99850
0.0128 0.0119 -0.1775 -0.0078 0.0087
0.99995 0.99919 0.99994 0.99980 0.99985
Sy*x
Range
n
0.666 0.194 0.674 0.037 0.038
51-196 2.0-12.6 56-194 0.4-3.3 0.3-5.3
300 300 100 100 100
Linearity in Serum Linearity in serum was established with the analysis of two specimen sets in non-clinical tests: commercially prepared serum linearity standards for sodium, chloride and potassium with normal protein content, and a group of random patient serum samples. All samples were analyzed in pairs on each of two of AVL 9180 instruments in each configuration: Na/K/Cl, Na/K/iCa and Na/K/Li. and in pairs on each of the following instrument types for comparision to various methods:
xx
Direct ISE, not flame correlated (listed as 98X)
AVL 983 Na/K/Cl Analyzer AVL 984 Na/K/iCa Analyzer AVL 985 Na/K/Li Analyzer
Direct ISE, flame correlated (listed as 91XX)
AVL 9130 Na/K/Cl Analyzer AVL 9140 Na/K/iCa Analyzer
Flame Absorbance Emission Spectroscopy
IL 943 Flame Photometer
Chloridometry
Labconco Digital Chloridometer